Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Koji Kubono,* Kazumasa Kushida and Kunihiko Yokoi

Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan

Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.042 wR factor = 0.132 Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,N'-Bis(5-chlorosalicylidene)ethane-1,2-diamine

The title compound, $C_{16}H_{14}Cl_2N_2O_2$, crystallizes in a centrosymmetric space group with one-half molecule in the asymmetric unit. The salicylideneimine moiety is almost planar. An intramolecular $O-H\cdots N$ hydrogen bond is observed $[O-H\cdots N = 2.611 (3) \text{ Å}]$. The packing of the molecules in the crystal structure is stabilized by $\pi-\pi$ stacking interactions between salicylideneimine moieties. Received 29 June 2004 Accepted 13 July 2004 Online 24 July 2004

Comment

Salicylidene compounds exhibit photochromism in the solid state by intramolecular proton transfer from the hydroxyl O atom to the imino N atom (Ziółek *et al.*, 2003; Zhao *et al.*, 2001). We have been studying the optical and electrical properties of supramolecular compounds constructed by intermolecular hydrogen bonds, π - π interactions and halogen-hydrogen contacts. Very recently, the title compound, (I), in the crystalline state, has given interesting photo-acoustic and photoluminescence spectra (Kushida *et al.*, 2004). This paper describes the crystal and molecular structure of (I).

The molecule crystallizes in the space group $P2_1/n$, lying on a center of inversion. The bond lengths and angles observed in the salicylideneimine moiety are all in the normal ranges and comparable with those of other related compounds (Elerman *et al.*, 1998; Kabak, 2003). The salicylideneimine moiety is almost planar, with a maximum deviation of 0.0120 (2) Å for atom C3. The torsion angles C8-N1-C7-C6 and C7-N1-

Figure 1

View of the molecule of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 The packing of the molecules of (I).

 $C8-C8^{i}$ are -179.4 (2) and -125.2 (3)°, respectively [symmetry code: (i) -x, -y, -z]. The intramolecular hydrogen bond distance of $O1-H1\cdots N1$ is 2.611 (3) Å.

In the crystal structure, the shortest intermolecular $C \cdots C$ distance is 3.477 (4) Å for C3···C7ⁱⁱ [symmetry code: (ii) 1 - x, -y, 1 - z]. The packing of the molecules in the crystal structure is stabilized by $\pi - \pi$ stacking interactions between salicylideneimine moieties.

Experimental

Compound (I) was prepared from 5-chlorosalicylaldehyde and 1,2diaminoethane. A solution of 1,2-diaminoethane (5 mmol) in methanol (30 ml) was added to a stirred hot solution of 5-chlorosalicylaldehyde (10 mmol), dissolved in methanol (100 ml). The mixture was refluxed for 30 min and then cooled to room temperature, giving yellow crystals suitable for X-ray analysis.

Crystal data

$C_{16}H_{14}Cl_2N_2O_2$	$D_x = 1.451 \text{ Mg m}^{-3}$
$M_r = 337.19$	Mo K α radiation
Monoclinic, $P2_1/n$	Cell parameters from 2
a = 9.379 (2) Å	reflections
b = 11.655 (3) Å	$\theta = 15.1 - 17.1^{\circ}$
c = 7.322 (3) Å	$\mu = 0.43 \text{ mm}^{-1}$
$\beta = 105.31 (3)^{\circ}$	T = 298.1 K
$V = 772.0 (4) Å^3$	Prism vellow
Z = 2	$0.30 \times 0.20 \times 0.20$ mm
Data collection Rigaku AFC-7R diffractometer ω -2 θ scans 4540 measured reflections 1776 independent reflections 1072 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.026$ $\theta_{max} = 27.5^{\circ}$	$h = -6 \rightarrow 12$ $k = 0 \rightarrow 15$ $l = -9 \rightarrow 9$ 3 standard reflections every 150 reflections intensity decay: 0.8%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters cor $w = 1/[0.0031F_o^2 + \sigma(F_o^2)]$

$wR(F^2) = 0.132$ S = 0.981069 reflections 107 parameters

m ıs

25

onstrained $F_o^2)]/(4F_o^2)$ $\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cl1-C4	1.746 (3)	N1-C7	1.259 (4)
O1-C1	1.351 (3)	N1-C8	1.460 (3)
C7-N1-C8	119.3 (3)	N1-C7-C6	122.4 (3)
C2-C1-O1	119.3 (2)	$N1 - C8 - C8^{i}$	110.2 (2)
C6-C1-O1	121.1 (2)		
C8-N1-C7-C6	-179.4(2)	C1-C6-C7-N1	-0.7(4)
O1-C1-C6-C7	0.7 (4)	$C7 - N1 - C8 - C8^{i}$	-125.2 (3)

Symmetry code: (i) -x, -y, -z

Table 2	
Contact distances	(Å).

C1···C4 ⁱⁱ	3.631 (4)	C4···C6 ⁱⁱ	3.574 (4)
$C1 \cdot \cdot \cdot C5^{ii}$	3.500 (4)	$C4 \cdot \cdot \cdot C7^{ii}$	3.727 (4)
$C2 \cdot \cdot \cdot C5^{ii}$	3.626 (4)	$C5 \cdot \cdot \cdot C6^{ii}$	3.720 (4)
$C3 \cdot \cdot \cdot C6^{ii}$	3.615 (4)	$C6 \cdot \cdot \cdot C6^{ii}$	3.910 (3)
C3· · · C7 ⁱⁱ	3.477 (4)		

Symmetry code: (ii) 1 - x, -y, 1 - z.

Table 3

Hydrogen-bonding geometry (Å, °).

O1 111 N/1 0.07 1.00 0.(11.(0) 1.0		$D=\Pi$	$D = \Pi \cdots A$
$O1-H1\cdots N1$ 0.97 1.80 2.611 (3) 13	1.80 2.611 (3) 138	0.97	O1−H1···N1

The H atoms of the hydroxy groups were found in a difference Fourier map. The other H atoms were placed at idealized positions, with C-H = 0.95 Å. All H atoms were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: WinAFC (Rigaku/MSC, 2003); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2003).

This work was partially supported by a Grant-in-Aid (No. 16750061) for Scientific Research from the Japan Society for the Promotion of Science.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Elerman, Y., Elmali, A., Kabak, M. & Svoboda I. (1998). Acta Cryst. C54, 1701-1703.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kabak, M. (2003). J. Mol. Struct. 655, 135-139.
- Kushida, K., Kubono, K. & Yokoi, K. (2004). In preparation.
- Rigaku/MSC (2003). WinAFC and CrystalStructure. Version 3.5.1. Rigaku/ MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Watkin, D. J., Prout, C. K. Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.
- Zhao, J. Z., Zhao, B., Liu, J. Z., Xu, W. Q. & Wang, Z. M. (2001). Spetrochim. Acta A, 57, 149-154.
- Ziółek, M., Kubicki, J., Maciejewski, A., Naskrecki, R. & Grabowska, A. (2003). Chem. Phys. Lett. 369, 80-89.